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ABSTRACT. In this note we explain a point left open in the literature of
Hardy spaces, namely that for a sufficiently smooth m-linear Calderón-
Zygmund operator bounded on a product of Lebesgue spaces we have

T ( f1, . . . , fm) = ∑
i1

· · ·∑
im

λ1,i1 · · ·λm,imT (a1,i1 , . . . ,am,im) a.e.,

where a j,i j are H p j atoms, λ j,i j ∈ C, and f j = ∑i j λ j,i j a j,i j are H p j dis-
tributions. In some particular cases the proof is new even when m = 1.

1. INTRODUCTION

This article is a subsequent article of [7] and is concerned with the
boundedness of multilinear Calderón-Zygmund operators on products of
Hardy spaces. Our goal in this article is to prove that the action of a suffi-
ciently smooth m-linear Calderón-Zygmund operator can be interchanged
with infinite sums of atoms; see identity (3). We also discuss approxi-
mations of general m-linear Calderón-Zygmund operators by sequences of
smoother ones.

Multilinear Calderón-Zygmund operators were introduced by Coifman
and Meyer [4], [5] but were not systematically studied for about a quar-
ter century until the appearance of [9] and its subsequent article [8]. The
boundedness of these operators on products of Hardy H p spaces first ap-
peared in [7]. Subsequently, the articles [10], [11] studied the boundedness
of these operators from product Hardy spaces into Hardy spaces under some
additional conditions; the related work in [3] focuses on singular integrals
in product spaces.

We begin by giving a precise definition of Calderón-Zygmund operators.
Let D(Rn) be the space of smooth functions with compact support.

Definition 1.1. An m-linear operator T : D(Rn)×D(Rn)×·· ·×D(Rn)→
D ′(Rn), whose Schwartz kernel S coincides with a function K away from
diagonal {(y0,y1, . . . ,ym) : y0 = y1 = · · · = ym} on (Rn)m+1, is called a
Calderón-Zygmund operator if

(1)
∣∣∣∂ α0

y0
∂

α1
y1
· · ·∂ αm

ym
K(y0,y1, . . . ,ym)

∣∣∣≤ Aα

d(~y)mn+|α| ,

1
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where d(~y) = ∑
m
i,l=0 |yi− yl| and α = (α1,α2, . . . ,αm) is a multiindex with

|α| ≤ I and I is some large integer; and there exist 1 < q j < ∞ and 1 ≤ q
such that

(2) ‖T ( f1, f2, . . . , fm)‖Lq ≤ A‖ f1‖Lq1‖ f2‖Lq2 · · ·‖ fm‖Lqm ,

where 1
q = ∑

m
j=1

1
q j

. We call A and Aα the associated constants of T .

If there is no confusion we denote d(~y) simply by d.

Remark 1.2. The fact that S is a Schwartz kernel of T means that S is an
element of D ′(R(m+1)n) and such that for all f j,g ∈D(Rn) we have

〈T ( f1, . . . , fm),g〉 = 〈S,g⊗ f1⊗·· ·⊗ fm〉 .
Here (g⊗ f1⊗·· ·⊗ fm)(y0,y1, . . . ,ym) = g(y0) f1(y1) · · · fm(ym).

Remark 1.3. If T maps Lq1 × ·· · × Lqm to Lq for some 1 < q j < ∞, 1 ≤
q < ∞, then T also maps Lr1×·· ·×Lrm to Lr for any r j,r with 1 < r j < ∞,
1
r = ∑

m
j=1

1
r j

; see [9].

In [7] it was proved that T is bounded from H p1 ×·· ·×H pm to Lp with
1
p = ∑ j

1
p j

by showing that ‖T (a1, . . . ,am)‖Lp ≤C, where a j are H p j-atoms.
The proof relies on identity (3) below, which was left unproved there. The
proof of (3), although trivial for finite sums of atoms, is quite delicate and
requires substantial work for infinite sums. The details of the argument are
carefully described in this article. Note that it does not suffice to know
the validity of (3) for finite sums of atoms, to derive the boundedness of T
on H p1 × ·· ·×H pm . In fact, although the set F of finite combinations of
atoms is dense in H p j , Bownik [2], inspired by an idea of Meyer (contained
in [13]), constructed an example of a linear functional on a dense subspace
of H1 that is uniformly bounded on F but does not extend to a bounded
linear functional on the whole H1.

The main goal of this article is to provide a proof for the following result:

Theorem 1.4. Let 0 < p j ≤ 1 < q j < ∞ and let f j ∈ H p j ∩Lq j have atomic
decompositions f j = ∑i j λ j,i ja j,i j , where λ j,i j ∈ C, ‖ f j‖

p j

H p j ≈ ∑i j |λ j,i j |p j ,
and a j,i j are L∞ atoms for H p j . Let T be a Calderón-Zygmund operator as
in Definition 1.1 which satisfies (2). Then for almost all x ∈ Rn we have

(3) Tk( f1, . . . , fm)(x) =
∞

∑
i1=1
· · ·

∞

∑
im=1

λ1,i1 . . .λm,imTk(a1,i1, . . . ,am,im)(x),

and consequently, T maps H p1×·· ·×H pm to Lp, when 1
p = 1

p1
+ · · ·+ 1

pm
.

In Sections 2 and 3 we prove Theorem 1.4 while in Sections 4 and 5 we
provide an alternative proof of identity (3) for Calderón-Zygmund operators
defined as almost pointwise limits of smoother operators.
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2. THE APPROXIMATIONS {Tk}

To obtain the proof of (3) we need to introduce a new operator Tk which
is defined as

Tk( f1, . . . , fm) = RkT (Rk f1, . . . ,Rk fm),

where Rk( f ) = φk ∗ f , φ is a nonnegative smooth radial function supported
in B(0,1) (the unit ball of radius 1) whose integral is 1, and φk(x)= knφ(kx).
Denote by Sk the kernel of Tk. For this type of approximations in the linear
case, we refer to [12] and [1].

Since ‖Rk( f )‖Lq ≤ ‖ f‖Lq and ‖Rk f − f‖Lq → 0 as k→ ∞ for q ≥ 1, it’s
easy to check that Tk( f1, . . . , fm)→ T ( f1, . . . , fm) in Lq whenever f j ∈ Lq j ,
1
q =∑

m
j=1

1
q j

, ∞> q j > 1 and q≥ 1. These Tk’s satisfy several nice properties
which we state in the next two results.

Proposition 2.1. {Tk} is a collection of Calderón-Zygmund operators with
equivalent constants.

Proof. We observe that ‖Tk( f1, . . . , fm)‖Lq ≤ C‖ f1‖Lq1 · · · ‖ fm‖Lqm , since
‖Rk f‖Lq ≤ ‖ f‖Lq‖φ‖L1 , thus one requirement in Definition 1.1 is satisfied.

Next, we check condition (1) on the kernel Sk of Tk∣∣∣∂ α0
y0

∂
α1
y1

. . .∂ αm
ym

Sk(y0,y1, . . . ,ym)
∣∣∣≤ Aα

d(~y)mn+|α| ,

which, by an easy calculation, is defined at every point by

Sk(y0,y1, . . . ,ym) = 〈T (τy1φk, . . . ,τymφk),τy0φk〉,
where τy f (x) = f (x− y).

We consider two cases concerning the size of d(~y) when we fix k.
Case 1. d(~y)> 4r

k , where r =C2
m+1 +1 and C2

m+1 =
(m+1)m

2 . If we choose
the largest term |yl1−yl2| among |yi−yl|, we have |yl1−yl2|>

4
k and there-

fore supp τyl1
φk∩supp τyl2

φk = /0. As a result, Sk(y0, . . . ,ym) can be written
as∫

R(m+1)n
K(y0− u0

k ,y1− u1
k , . . . ,ym− um

k )φ(u0)φ(u1) . . .φ(um)du0du1 . . .dum.

Since |(yl1−
ul1
k )− (yl2−

ul2
k )|> 1

2 |yl1− yl2| for uli ∈ supp φ , i = 1,2,

|∂ α0
y0

∂
α1
y1

. . .∂ αm
ym

Sk(y0,y1, . . . ,ym)| ≤
Aα(

∑i,l |(yi− ui
k )− (yl− ul

k )|
)mn+|α|

≤ Aα

(1
2 |yl1− yl2|)mn+|α|

≤ C Aα

d(~y)mn+|α|
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where the constant C is independent of k.
Case 2. d(~y)≤ 4r

k . We can use the boundedness of T to get

|∂ α0
y0

∂
α1
y1
· · ·∂ αm

ym
Sk(y0,y1, . . . ,ym)|

= |〈T (τy1(∂
α1φk), . . . ,τym(∂

αmφk)),τy0(∂
α0φk)〉|

≤ Ak(m+1)nk|α|k−
n

q1 · · ·k−
n

qm k−
n
q′ ‖φ‖Lq1 · · ·‖φ‖Lqm‖φ‖Lq′

=Ckmn+|α|

≤Cd(~y)−(mn+|α|) ,

where again C is independent of k. �

Note that the preceding proof shows that each function ∂
α0
y0 ∂

α1
y1 · · ·∂ αm

ym
Sk

is bounded by Ckmn+|α|.

Proposition 2.2. For fixed positive integers k and J, operators with kernels
of the form ∂ β Sk, where |β | ≤ J, form a collection of Calderón-Zygmund
operators with the same associated constants, which depend only on J.

Proof. Any finite collection of Calderón-Zygmund operators can be made
to have the same associated constants, so we need only to check that each
Tβ with kernel ∂ β Sk is a Calderón-Zygmund operator.

We have proved the case β = 0 in Proposition 2.1. For the case β 6= 0, if
d > 4r

k , where r is as in Proposition 2.1, then |∂ α∂ β Sk| ≤Cd−mn−|α|−|β | ≤
Ck|β |d−mn−|α|. If d ≤ 4r

k and β 6= 0, then |∂ α∂ β Sk| ≤ Ckmn+|β |+|α| ≤
Ck|β |d−mn−|α|. We have proved that Tβ satisfies (1) in Definition 1.1.

Concerning the boundedness of Tβ on some product of Lebesgue spaces,
we take q = 1 and use the property that ∂ β Sk is bounded to get

‖Tβ ( f1, f2, . . . , fm)‖L1

≤
∫
‖∂ β Sk(·,y1,y2, . . . ,ym)‖L1| f1(y1) f2(y2) · · · fm(ym)|dy1dy2 · · ·dym

≤C
∫
| f1(y1) f2(y2) · · · fm(ym)|dy1dy2 · · ·dym

≤C‖ f1‖Lq1‖ f2‖Lq2 · · ·‖ fm‖Lqm ,

provided 1 = ∑
m
j=1

1
q j

and ‖∂ β Sk(·,y1,y2, . . . ,ym)‖L1 ≤C < ∞. To verify the
latter, we split the integral into two parts(∫

d≤ 4r
k

+
∫

d> 4r
k

)
|∂ β Sk(x,y1,y2, . . . ,ym)|dx

≤
∫

d≤ 4r
k

kmn+|β |dx+
∫

d> 4r
k

d−mn−|β |dx := I+ II
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Obviously |I| ≤
∫
|x−y1|≤ 4r

k
kmn+|β |dx≤Ck.

When d > 4r
k , if ∑

m
i,l=1 |yi− yl|> 2r

k , then

|II| ≤
∫

Rn

1
( 2r

km + |x− yi|)mn+|β |dx < ∞

since |β | ≥ 1 and m≥ 1. If ∑i,l |yi−yl|< 2r
k , then ∑

m
i=1 |x−yi|> 2r

k and we
must have l such that |x− yl|> 2r

km and then let us choose i 6= l, as a result

|II| ≤
∫

Rn

1
( 2r

km + |x− yi|)mn+|β |dx < ∞.

By now we have checked the boundedness requirement in Definition 1.1
and therefore we conclude the proof. �

We now study the behavior of Tk on Hardy spaces. Let us fix p j with
0 < p j ≤ 1. Since Tk are Calderón-Zygmund operators with equivalent con-
stants as T , by the results in [7], there is a constant C independent of k such
that ‖Tk(a1, . . . ,am)‖Lp ≤C if a j is an H p j-atom, j = 1, . . . ,m. In the next
section we show that for all x ∈ Rn we have

(4) Tk( f1, . . . , fm)(x) =
∞

∑
i1=1
· · ·

∞

∑
im=1

λ1,i1 · · ·λm,imTk(a1,i1, . . . ,am,im)(x)

whenever f j ∈ H p j ∩Lq j and f j = ∑
∞
i j=1 λ j,i ja j,i j in H p j ⊂D ′, which is ar-

bitrary atomic decomposition of f j such that (∑i j |λ j,i j |p j)1/p j ≤ 2‖ f j‖H p j .
Under these assumptions, we have

‖Tk( f1, . . . , fm)‖p
Lp =

∥∥ ∞

∑
i1=1
· · ·

∞

∑
im=1

λ1,i1 · · ·λm,imTk(a1,i1, . . . ,am,im)
∥∥p

Lp

≤C∑ |λ1,i1 · · ·λm,im|p‖Tk(a1,i1, . . . ,am,im)‖
p
Lp

≤C∑ |λ1,i1 · · ·λm,im|p

≤C(∑ |λ1,i1|
p1)

p
p1 · · ·(∑ |λm,im |pm)

p
pm

≤C‖ f1‖p
H p1 · · ·‖ fm‖p

H pm .

Since H p j ∩Lq j is dense in H p j , we can therefore extend Tk continuously
on H p1×·· ·×H pm .

If we fix f j ∈ H p j ∩Lq j , then we can extract a subsequence ki, which de-
pends on { f j}m

j=1, such that Tki( f1, . . . , fm)(x)→ T ( f1, . . . , fm)(x) a.e.. Ap-
plying Fatou’s lemma and ‖Tk( f1, . . . , fm)‖p

Lp ≤C‖ f1‖p
H p1 · · ·‖ fm‖p

H pm with
C independent of k, then we have

‖T ( f1, . . . , fm)‖Lp ≤C‖ f1‖H p1 · · ·‖ fm‖H pm
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for all f j ∈ H p j ∩Lq j . Then T can be continuously extended on the entire
H p1×·· ·×H pm due to the density of H p j ∩Lq j in H p j .

3. ∂ β Sk AS A CONTINUOUS LINEAR FUNCTIONAL ON H p j

In this section we establish the validity of (4). We begin with the follow-
ing result.

Theorem 3.1. Let 0 < pi ≤ 1 < qi < ∞, i ∈ {1, . . . ,m} and fix k, x, j and
ft ∈ H pt ∩Lqt for t 6= j. Then the function

y j 7→
∫

R(m−1)n
Sk(x,y1, . . . ,ym)∏

t 6= j
ft(yt)dy1 · · ·dy j−1dy j+1 . . .dym,

is a continuous linear functional on H p j if the I in Definition 1.1 satisfies
I ≥ m+∑

m
j=1[α j], where α j =

n
p j
−n.

Equality (4) is a direct consequence of this theorem. Indeed, we take
I = m+∑

m
j=1[α j], where I is as in Definition 1.1. If f1 = ∑i1 λ1,i1a1,i1 in

H p1 ∩Lq1 and x is fixed in Rn, then

Tk( f1, . . . , fm)(x)

=
∫

Rn

∫
Rn(m−1)

Sk(x,y1,y2, . . . ,ym)
m

∏
i=2

fi(yi)dy2 · · ·dym f1(y1)dy1

=
∞

∑
i1=1

λ1,i1

∫
Rn

∫
Rn(m−1)

Sk(x,y1,y2, . . . ,ym)
m

∏
i=2

fi(yi)dy2 · · ·dyma1,i1(y1)dy1

=
∞

∑
i1=1

λ1,i1T (a1,i1, f2, . . . , fm)(x) ,

since
∫

Sk(x,y1,y2, . . . ,ym)∏
m
i=2 fi(yi)dy2 · · ·dym ∈ (H p1)∗. Now use this

idea iteratively with f1 replaced by a1,i1 to obtain (4).
A function g is in Lq

α(Rn) if g ∈ Lq
loc(R

n) and there is a constant C such
that for any cube Q ⊂ Rn, there is a polynomial P of degree less than [α]
such that (

1
|Q|

∫
Q
|g(x)−P(x)|qdx

) 1
q

≤C|Q|
α

n .

The smallest C such that the previous inequality is true is denoted by ‖g‖Lq
α
.

This norm makes Lq
α(Rn) a normed space if we identify functions whose

difference is a polynomial of degree less than [α]. We need a characteriza-
tion of (H p)∗ which is discussed in detail in [6].

Theorem A. If 0 < p≤ 1, α = n
p −n, 1≤ q≤ ∞ if p < 1 and 1≤ q < ∞ if

p = 1, then (H p(Rn))∗ = Lq
α(Rn).
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Proof of Theorem 3.1. By Theorem A, we need only to check that the func-
tion in Theorem 3.1 is in L∞

α j
(Rn), which is exactly (H p j)∗ if 0 < p < 1 and

a subspace of (H1)∗ when p j = 1, since

1
|Q|

∫
Q
| f (x)|dx≤ ‖ f χQ‖L∞ .

We only consider the case j = 1 here since the remaining cases are ob-
tained by symmetry.

Let us consider the function Gβ (ym) = ∂ β Sk(x,y1, . . . ,ym−1,ym), where
x, y1, . . . , ym−1 are fixed and |β | ≤ J− ([αm] + 1) with J a fixed positive
integer, which is larger than m+∑

m
j=1[α j] and we use α j to denote n

p j
−n .

We claim that ‖Gβ‖Lq
αm
≤C with C independent of x,y1, . . . ,ym−1 and β .

Indeed for any cube Q = Q(x0,r), a cube centered at x0 with length r,
there is a polynomial P such that |Gβ (ym)−P(ym)| ≤C|Q|

αm
n for all ym in

Q. The functions Gβ = ∂ β Sk are bounded with bound C independent of
x,y1, . . . ,ym−1 and β , so we can take P = 0 and show that |Gβ (ym)| ≤C ≤
C|Q|αm/n whenever r ≥ 1. Now we can restrict ourselves to the case where
r < 1. If we take P to be the Taylor polynomial of Gβ (ym) at x0 of degree
[αm], then

|Gβ (ym)−P(ym)|= | ∑
|γ|=[αm]+1

∂
γ
ym

∂
β Sk(x,y1, . . . ,ym−1,ξ )(ym− x0)

γ |

≤Ckmn+|β |+|γ|r[αm]+1

≤Ckmn+|β |+|γ|rαm ,

where C depends on the constants of the Calderón-Zygmund operators Tγ+β

with kernels ∂ β+γSk, but it’s independent of k and r.
Now we have proved that Gβ ∈ (H pm)∗ with bounded norms for |β | ≤

J− ([αm] + 1), as a result
∫

Gβ (ym) fm(ym)dym = ∑λi
∫

Gβ (ym)ai(ym)dym
if fm = ∑λiai is an atomic decomposition of fm. Furthermore we can show
that |〈Gβ , fm〉| ≤C‖ fm‖H pm with C independent of the variables again.

We will finish the proof by induction. Let us assume we have proved
that, 〈∂ β Sk, fν+1⊗·· ·⊗ fm〉 with |β | ≤ J−∑

m
i=ν([αi]+1), as functions of

yν , are functions in (H pν )∗ with norms bounded by

(5) C
m

∏
i=ν+1

‖ fi‖H pi ,

where C is independent of x,y1, . . . ,yν and β . Fix fi for i≥ ν and define

Fβ (yν−1) = 〈∂ β Sk, fν ⊗·· ·⊗ fm〉.
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Next we show that Fβ (yν−1)∈L∞
αν−1

=(H pν−1)∗ with operator norm bounded
by C ∏

m
i=ν ‖ fi‖H pi . Again we only consider the case r < 1 because of (5).

Take P as the Taylor polynomial of Fβ (yν−1) at x0 of degree [αν−1], then

|Fβ (yν−1)−P(yν−1)|

= | ∑
|γ|=[αν−1]+1

〈∂ γ
yν−1

∂
β Sk(x, . . . ,yν−2,ξ ,yν , . . .), fν ⊗·· ·⊗ fm〉(yν−1− x0)

γ |

≤C
m

∏
i=ν

‖ fi‖H pi rαν−1

where C is independent of x,y1, . . . ,yν−2 and β .
To summarize, we have proved that

∫
∂ β Sk ∏i≥2 fi(yi)dy2 · · ·dym is in

(H p1)∗ as a function of y1 for |β | ≤ J−(m+∑
m
j=1[α j]). We therefore obtain

the conclusion of this theorem by symmetry. �

4. AN ALTERNATIVE APPROACH

We can prove a stronger result, namely that equality (4) is true if we
replace Tk by T , where T is a Calderón-Zygmund operator defined in Defi-
nition 1.1 with the additional condition (6) below. A direct corollary of this
result is that for such T we have

‖T ( f1, . . . , fm)‖p
Lp ≤ C‖ f1‖p

H p1 · · ·‖ fm‖p
H pm ,

and the proof of this is the same as that for Tk given at the end of Section 2.
Pick a function Φ(x) which is C ∞ on Rn and is equal to 1 for |x| ≥ 2 and

vanishes for |x| ≤ 1. Then we define for ε < 1/10

K(ε)(y0,y1, . . . ,ym) = K(y0,y1, . . . ,ym)[Φ(d(~y)/ε)−Φ(εd(~y))]

and it’s easy to check that |∂ αK(ε)(~y)| ≤ Aα d(~y)−mn−|α| uniformly in ε by
considering d(~y) to be comparable to ε , 1/ε and otherwise respectively. We
can define a truncated operator

T (ε)( f1, . . . , fm)(y0) =
∫

Rmn
K(ε)(y0,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym.

If there exists a sequence {εk} that tends to zero and we can define T as

(6) T ( f1, . . . , fm)(y0) = lim
εk→0

T (εk)( f1, . . . , fm)(y0)

initially for Schwartz functions f j. Examples of operators of this kind can
be found in [9]. Actually if

(7)
∣∣∣∣∫R1<|y1|+···+|ym|<R2

K(y1, . . . ,ym)dy1 · · ·dym

∣∣∣∣≤ A < ∞
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for all 0<R1 <R2 <∞, then we can define an m-linear translation-invariant
Calderón-Zygmund operator satisfying (6). By Cotlar’s inequality in [8] we
have that T (ε) maps Lq1×·· ·×Lqm to Lq uniformly in ε , (6) is valid almost
everywhere for any f j ∈ Lq j and T (εk)( f1, . . . , fm)→ T ( f1, . . . , fm) in Lq.
Although the maximal operator in [8] is defined in a non-smooth way, while
here we defined the maximal operator via smooth truncations, we still are
able to apply results in [8] because the difference of these two operators is
controlled by the product of the Hardy-Littlewood maximal operators.

Theorem 4.1. Let T be an m-linear Calderón-Zygmund operator satisfying
(6), then

T ( f1, . . . , fm)(x) = ∑
i1

· · ·∑
im

λ1,i1 · · ·λm,imT (a1,i1, . . . ,am,im)(x) a.e.,

where f j = ∑i j λ j,i ja j,i j lies in H p j ∩L2 and the sum provides an arbitrary
atomic decomposition of f j.

Proof. To prove this theorem, we first prove the analogous result for T (ε),
i.e.,

T (ε)( f1, . . . , fm)(x) = ∑
i1

· · ·∑
im

λ1,i1 · · ·λm,imT (ε)(a1,i1, . . . ,am,im)(x) a.e..

Let us fix ε > 0. Then we have∣∣∣{∣∣T (ε)( f1, . . . , fm)−∑
i1

· · ·∑
im

λ1,i1 · · ·λm,imT (ε)(a1,i1, . . . ,am,im)
∣∣> δ

}∣∣∣
≤
∣∣∣{∣∣T (ε)( f1, . . . , fm)− ∑

max(i1,...,im)≤L
λ1,i1 · · ·λm,imT (ε)(a1,i1, . . . ,am,im)

∣∣> δ

2
}∣∣∣

+
∣∣∣{∣∣ ∑

max(i1,...,im)>L
λ1,i1 · · ·λm,imT (ε)(a1,i1, . . . ,am,im)

∣∣> δ

2
}∣∣∣

= I+ II .

The kernels K(ε) satisfy the same assumptions as K uniformly in ε , there-
fore in view of the results in [7] we have that

II≤C( 2
δ
)p
( m

∑
j=1

( ∞

∑
k j=L
|λ j,k j |

p j
)1/p j

∏
r 6= j
‖ fr‖H pr

)p
,

which tends to 0 as L→ ∞.
To estimate term I, we need the following lemma which will be proved

in next section.
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Lemma 4.2. If f j ∈ L2∩H p j , then∣∣∣∣∫Rmn
K(ε)(y0,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym

∣∣∣∣≤Cε

m

∏
j=1

MN( f j)(y0) ,

where MN is the grand maximal function defined as

M N( f )(x) = sup
ϕ∈FN

sup
y∈Rn

|y−x|≤t

|(ϕt ∗ f )(y)| ,

where
FN =

{
ϕ ∈S (Rn) : NN(ϕ)≤ 1

}
,

NN(ϕ) =
∫

Rn
(1+ |x|)N

∑
|α|≤N+1

|∂ α
ϕ(x)|dx,

and N = max j[
n
p j
]+1.

Then term I tends to 0 once we observe that ‖∑
∞
i j=L λ j,i ja j,i j‖H p j → 0 as

L→∞ and term I can be controlled by a sum of terms with each term of the
form (∏t 6= j ‖ ft‖H pt (∑i j≥L |λ j,i j |p j)1/p j)p. Since δ is arbitrary, we establish
that

(8) T (ε)( f1, . . . , fm) = ∑
i1

· · ·∑
im

λ1,i1 · · ·λm,imT (ε)(a1,i1 , . . . ,am,im) a.e..

To remove the ε in the preceding equality, we claim that

∑
i1

· · ·∑
im

λ1,i1 · · ·λm,imT (εk)(a1,i1, . . . ,am,im)→

∑
i1

· · ·∑
im

λ1,i1 · · ·λm,imT (a1,i1, . . . ,am,im)(9)

in measure as εk→ 0. Hence once we fix the f j’s and their atomic decom-
position f j = ∑ j λ j,i ja j,i j for 1≤ j ≤m, we can find a subsequence εkl → 0
such that

∑
i1

· · ·∑
im

λ1,i1 · · ·λm,imT (εkl )(a1,i1, . . . ,am,im)(x)→

∑
i1

· · ·∑
im

λ1,i1 · · ·λm,imT (a1,i1, . . . ,am,im)(x) a.e.(10)

Combining all these results and (8) we can get the desired equality.
Now let us prove the claimed convergence in measure (9). We want to

estimate∣∣∣{∣∣∑
i1

· · ·∑
im

λ1,i1 · · ·λm,im(T
(ε)(a1,i1, . . . ,am,im)−T (a1,i1, . . . ,am,im))

∣∣>δ
}∣∣∣
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≤
∣∣∣{| ∑

max(i1,...,im)≤L
λ1,i1 · · ·λm,im(T

(ε)−T )(a1,i1, . . . ,am,im)|> δ/2
}∣∣∣

+
∣∣∣{∣∣ ∑

max(i1,...,im)≥L+1
λ1,i1 · · ·λm,im(T

(ε)−T )(a1,i1, . . . ,am,im)
∣∣> δ/2

}∣∣∣.
We bound the second term by C(2/δ )p

∑max(i1,...,im)≥L+1 |λ1,i1 · · ·λm,im|p,
which turns out to be less than a given τ > 0 if L is large. Once we fix
L, the first term can be controlled by τ too for εk small since T (εk)→ T in
Lq. Therefore the claimed convergence is valid. �

5. PROOF OF LEMMA 4.2

Now we will prove that if f j ∈ L2∩H p j , then∣∣∣∣∫Rmn
K(ε)(y0,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym

∣∣∣∣≤Cε

m

∏
j=1

MN( f j)(y0) ,

where MN is the grand maximal function.
We will use the following fact: Let F be a C ∞ function on Rn supported

in [−A/2,A/2]n for some A > 0. Then we have

F(x) =
1

An ∑
k∈Zn

F̂(k/A)e2πik·x/A
χ[−A/2,A/2]n(x) .

(This is proved via a Fourier series expansion of the function F(Ax) on the
cube [−1/2,1/2]n.)

For every x ∈ Rn define a function K(ε,x) on (Rn)m via

K(ε,x)(t1, . . . , tm) = K(ε)(x,x+ t1, . . . ,x+ tm)

Then we have

K(ε,x)(t1, . . . , tm) = K(ε)(x,y1, . . . ,ym)

when t j = y j− x. The function

(t1, . . . , tm) 7→ K(ε,x)(t1, . . . , tm)

is supported in the ball B(0,2/ε)m which is contained in [−2/ε,2/ε]nm. We
expand in Fourier series K(ε,x) on the cube [−4/ε,4/ε]nm to obtain

K(ε,x)(t1, . . . , tm)

=
(

ε

8

)mn
∑

~k∈(Zn)m

C~k(x,ε)e
2πε

8 i(k1·t1+···+km·tm)Θ
(
|t1|ε

)
· · ·Θ

(
|tm|ε

)
,
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where (t1, . . . , tm) 7→Θ
(
|t1|ε

)
· · ·Θ

(
|tm|ε

)
is a smooth function supported in

B(0,4/ε)m and is equal to 1 on B(0,2/ε)m, which contains the support of
K(ε,x). Also,

C~k(x,ε) =
∫

K(ε,x)(t1, . . . , tm)e−
2πε

8 i(k1·t1+···+km·tm)dt1 · · ·dtm .

To estimate C~k(x,ε) we integrate by parts with respect to the differential
operator (I − ∆t1)

M · · ·(I − ∆tm)
M. We note that the hypothesis (1) on K

(which is also valid for K(ε)) implies that

|∂ αK(ε,x)(t1, . . . , tm)| ≤ A′α (|t1|+ · · ·+ |tm|)−mn−|α|

uniformly in x for all |α| ≤ I. Integration by parts gives that

|C~k(x,ε)| ≤Cε
M (1+ |k1|2)−M · · ·(1+ |km|2)−M

for any M > 0 such that 2mM ≤ I.
Then we can write∫

Rmn
K(ε)(y0,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym

as a sum

∑
~k∈(Zn)m

C~k(x,ε)
m

∏
j=1

∫
e

2πε

8 ik j·(x−y j)Θ
(
|x− y j|ε

)
f j(y j)dy j.

All the functions inside the integral are multiples of normalized bumps
whose NN norm is at most a multiple of (1 + |k j|)N+1. Taking 2M >
N + 1+ n we obtain the required conclusion in view of the decay of the
sum in~k. Note that we need here I = m(N +1+n), where I is as in Defini-
tion 1.1.
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